
An Execution Service for Grid Computing 

Warren Smith 
Computer Sciences Corporation 
NASA Ames Research Center 

wwsmith@nas.nasa.gov 

Abstract 
This paper describes the design and implementation of 

the IPG Execution Service that reliably executes complex 
jobs on a computational grid. Our Execution Service is 
part of the IPG service architecture whose goal is to 
support location-independent computing. In such an 
environment, once n user ports an npplicntion to one or 
more hardware/software platfrms, the user can describe 
this environment to the grid the grid can locate instances 
of this platfrm, configure the platfrm as required for the 
application, and then execute the application. Our 
Execution Service runs jobs that set up such environments 
for applications and executes them. These jobs consist of 
a set of tasks for executing applications and managing 
data. The tasks have user-defined starting conditions that 
allow users to specih complex dependencies including 
task to execute when tasks fail, afiequent occurrence in 
a large distributed system, or are cancelled. The 
execution task provided by our service also configures the 
application environment exactly as specified by the user 
and captures the exit code of the application, features that 
many grid execution services do not support due to 
dflculties interfacing to local scheduling systems. 

1. Introduction 

The NASA Information Power Grid (IPG) project [2, 
131 is one of the original grid computing projects and our 
goal has been to integrate, develop, and deploy a set of 
grid services to enable scientific discovery. The scientists 
we support perform tasks such as designing and analyzing 
aerospace vehicles, investigating the Earth’s climate, and 
archiving and analyzing astronomical data. We have 
based our grid on the Globus toolkit [ 111 and we are 
currently in the process of migrating from version 2 of 
Globus (GT2) to version 3 of Globus (GT3). We have 
also deployed services such as the Storage Resource 
Broker [4] and Condor [5]. 

While we have found existing grid services to be 
usable, they do not always satisfy all of our needs. In 
particular, we have found that the collection of available 
grid services and software do not add up to a usable grid. 
There are many reasons for this, but a few examples are 

Chaumin Hu 
Advanced Management Technology Inc. 

NASA Ames Research Center 
chaumin@nas.nasa.gov 

that users still need to know details about the resources 
they want to use so that they can configure their 
applications to use the resources and users must handle 
even simple failures rather than the grid handling them. 

For the past two years, the NASA Information Power 
Grid (IPG) project has been developing higher-level grid 
services that attempt to create a grid to address these 
problems. The services we are developing include 
resource brokering, automatic software dependency 
analysis and installation, configuring execution 
environments, and policy-based access control. In 
addition, we have developed the service we describe in 
this paper: An Execution Service to reliably execute 
complex jobs in a grid environment. 

The jobs sent to our Execution Service consist of a set 
of tasks for executing applications and managing data. A 
job can consist of only a few, or a large number of tasks. 
Our service executes the tasks in a job based on user- 
defined starting conditions for each task where the 
starting conditions are based on the states of other tasks. 
This formulation allows users to describe jobs that have 
tasks that execute in parallel and also tasks to execute 
when other tasks fail, a frequent occurrence in a large 
distributed system like a computational grid, or when the 
user cancels tasks. Another important feature of our 
Execution Service is that when it executes an application, 
the application is executed in the environment exactly as 
specified by the user and the exit code of the application 
is captured. This does not occur with many grid execution 
services because of difficulties interfacing to local 
scheduling systems. 

This paper begins in the next section with a brief 
overview of the IPG service architecture and a description 
of how our Execution Service fits within this architecture. 
Section 3 provides an overview of the functionality of our 
Execution Service. Section 4 provides more information 
on the task-based job model our service supports. Section 
5 describes how we are implementing our service as an 
OGSI service using the Globus toolkit. Section 6 presents 
related work and we provide our conclusions and future 
work in Section I. 

1 



2. IPG Service Architecture 

Our experience with Grid Computing has been that 
while there is a large amount of software available from 
various sources, this software does not add up to a very 
usable system once it is deployed. Functionality is 
missing from the software, the software is not as reliable 
as we would like, and resource differences are not hidden 
from our users so they end up needing to know a large 
amount of information about resources and their 
peculiarities. Our goal in the IPG is to provide a grid 
environment that addresses these problems and provides 
value to our users. To accomplish this, we are focusing on 
making Grid computing location-independent. What we 
mean by this is that once a user has an application that can 
execute on a certain hardware/software platform or 
platforms, the user can describe this environment to the 
grid, the grid can locate instances of this platform that can 
be used for the application, the grid can configure the 
platform as required for the application, and the grid can 
then execute the application. 

Our approach to providing this location-independent 
environment is to build our own set of services and to use 
grid services implemented elsewhere. We more exactly 
describe our problem as providing support for location- 
independent execution of workflows. Figure 1 shows our 
architecture and provides an overview of the current 
status of our services. A workflow consists of set of tasks 
and the dependencies between these tasks where the 
dependencies consist of both control and data 
dependencies. Tasks consist of simple tasks such as those 

for application execution and file management and 
composite tasks that contain other tasks. A workflow is 
sent to a Workflow Manager to execute. The Workflow 
Manager decides which portion of the workflow to 
execute and asks the Resource Broker for resource 
suggestions for each task. 

The Resource Broker makes suggestions using user- 
specified requirements such as resource type and user- 
specified preferences such as quick completion. The 
requirements sent to the broker describe the 
hardware/software platforms that are suitable for 
executing a task. To make selections, the Broker consults 
many other services. The Distributed Directory Service is 
used to search for resources with specific characteristics. 
The Resource Pricing Service is contacted to determine 
the cost of using these resources. The Allocat ion 
Management Service is used to determine if the user has 
an allocation that can be charged to when executing on 
specific resources. The Access Control Service is 
accessed to determine which resources the user can 
access. The Metadata Management Service is used to find 
virtual files that have the data the user requires. The 
Replica Management service is accessed to determine the 
physical locations of the user’s data. The Software 
Dependency Analysis Service is consulted to determine 
what software needs to be present on a system for an 
application to execute. The Software Catalog is used to 
locate where needed software is already installed or can 
be obtained. The Prediction Service provides predictions 
of application completion times and file transfer times. 

Once resources have been selected, the Naturalization 
Service is used to make each task in a workflow 



compatible with the computer system(s) it will execute on 
by configuring environment variables, directories, and 
specifying any supporting software that needs to be 
copied to the system. The purpose of the Execution 
Service, described in this paper, is to reliably execute a 
task graph. A task graph is the resulting set of tasks after a 
workflow (or portion of a workflow) has had computer 
systems selected for it and has been naturalized to those 
systems. The Execution Service uses a Remote Execution 
Service, such as the one provided by the Globus toolkit, to 
execute applications on remote resources. During this 

each grid user to a local account without the user having a 
pre-existing account. Event Management services are 
used by the Execution service to notify clients of the 
status of the execution of a task graph and are used by the 
Monitoring Service [17, 181 to notify clients of the status 
of resources and services. Finally the Management  
Service [17] is not visible to the general user but it 
received information about a grid from Monitoring 
services, notices when problems occur, and responds to 
problems in an appropriate way. 

3. Overview 

erecuticn, the ,n??,,ic dcc.... Sttrsrice is Used t!2 man r 

After several years of experience using grids, we 
decided that existing grid services to execute jobs did not 
satisfy all of our requirements for job model, job tracking, 
ease of maintenance, and other features. We therefore 
began developing an Execution Service that would satisfy 
our requirements and those of our users. The version 
presented here is the second major version of our service 
and it provides much of the functionality that our users 
have requested after using the first version of the service 
for almost a year. 

Our Execution Service allows users to submit, 
monitor, and cancel complex jobs. Each job consists of a 
set of tasks that perform actions such as executing 
applications and managing data. Each task is executed 
based on a starting condition that is an expression on the 
states of other tasks. This formulation allows tasks to be 
executed in parallel and also allows a user to specify tasks 
to execute when other tasks fail or are cancelled. Our 
support for such complex jobs has evolved out of our 
previous version of the Execution Service that supported a 
job model of pre-stage files, execute a single application, 
and post stage files. Our users asked for additional 
functionality such as creating directories and deleting 
files, executing multiple applications in one job, and 
specifying what tasks to execute when tasks fail or are 
cancelled. Further information about our job model is 
presented in Section 4. 

Our Execution Service attempts to execute tasks in a 
reliable manner. In a grid, resources such as networks, 
computer systems, and storage systems are constantly 
unavailable for planned maintenance and unplanned 

failures. Further, even when the resources are available, 
the software and services located on those resources may 
be unavailable or not operating correctly. There are ways 
to mitigate this inherent unreliability by techniques such 
as pre-planning outages and monitoring the status of a 
grid [7, 161 so that failures can be quickly repaired, but 
this will not eliminate the problem. To help our users deal 
with failures, our Execution Service detects when tasks 
fail and retries them when appropriate. To determine how 
to handle a failure, information about the cause of the 
failure is needed. 

------ A f t e r  a job has been siihmitte?. to niir Eweciitinn 
Service, users can monitor it in several ways. While the 
job is executing, users can either be notified when the 
state of the tasks in a job change or they can query to 
obtain a history of state changes for each task in a job. 
Further, many applications indicate whether they 
executed successfully or not using the exit code of the 
application. This is important information that our service 
captures, provides to the user and uses to determine if the 
execution of an application succeeded or failed. 

The notification of task state changes is accomplished 
by our Execution Service supporting the Event Producer 
interface of our event management framework and the 
client of our service supporting the Event Consumer 
interface of our event management framework. This 
allows the client to subscribe for events about task state 
from the service and the service to notify the client when 
the tasks change state. Another way that users can 
monitor their jobs is that even after a job is finished, users 
can query the Execution Service to obtain all of the 
information relating to the job. This information is stored 
for a user-specified amount of time with a default of 
several days. The ability to obtain information about a job 
that has already completed is very useful because it 
allows users to easily determine if a job that ran while the 
user was not watching it executed correctly. Without this 
historical record, a user has to examine the output of their 
application executions to determine if they executed 
correctly. If a failure occurred, a user has to use their 
application output to try to determine which application 
executions or file management operations failed. 

We have implemented our Execution Service as an 
OGSI service [I91 using version 3 of the Globus Toolkit 
[l]. Our service operates in a client-server manner, with 
the clients installed on our user-accessible systems and 
our service installed on a computer system dedicated to 
hosting grid services. We currently have version 2 of the 
Globus toolkit deployed on the IPG so the Execution 
Service executes tasks using the Globus Java COG [ 141 to 
access the Globus Resource Allocation Manager (GRAM) 
and GridFlT services on our systems. Further information 
about our implementation is presented in Section 5. 



4. Job Model 

The goals for our job model are to support complex 
jobs consisting of many actions and support conditional 
execution of actions depending on the states of other 
actions. To satisfy these goals, we have defined a job 
model where a job is a set of task. Each task has: 

An identifier that is user-defined and unique 
among all of the identifiers of sibling tasks. 
A starting condition that describes when the task 
can be started. This condition is specified as a 
,RCC?!PBC expressicn CT? the states of other tpsks. 
A starting condition can be empty which 
indicates that the task can be started 
immediately. 
A state that is: 

o 

o 

NOT-EADY if the starting condition 
of the task has not been met 
READY if the stzrting ccndition of the 
task has been met, but the task has not 
yet begun to execute 

o RUNNING if the task is executing 
o SUCCEEDED if the task executed 

successfully 
o FAILED if the task failed during 

execution 
o CANCELLED if the task was cancelled 

by the user 
o NOT-EXECUTED if the task will not 

be executed because it's starting 
condition will not be met 

The state transition diagram for a task is shown 
in Figure 2.  

ition met htaning codition met condition never me 

fatled / /  us 

+l*pkq-dq 
Figure 2. State diagram for a task. 

We currently provide a variety of atomic tasks and a 
composite task. An atomic task is a relatively simple task 
that does not contain other tasks. We have defined atomic 
tasks that contain general task information (identifier, 
starting condition, and state) but also require additional 
information. We have defined the following atomic tasks: 

An ExecuteTask that executes an application on 
a remote computer system. A user specifies 
parameters such as the host to execute the 
application on, the application to execute, the 
arguments to the application, the number of 
CPUs, and so on. This task also has a user- 
specified Boolean equation on the exit code of 
the application so that the user can specify which 
exit codes indicate success and which ones 
indicate failure. By default, an exit code of 0 
indicates success and any other exit code 
indicates failure. The exit code used in this 
equation is also provided to the user by the task. 
A MakeDirectoryTask that creates a directory on 
a remote computer system. This task requires a 
host and directory name. 
A CopyTask that copies files between remote 
computer systems. The user specifies source and 
destination hosts, directories, and file names 
where the file names can include wildcards. A 
user can also specify that a recursive copy should 
be performed. 
A MoveTask that moves files between remote 
computer systems. The user specifies source and 
destination hosts, directories, and file names 
where the file names can include wildcards. A 
user can also specify that a recursive move 
should be performed. 
A RemoveTask to remove one or more files or 
directories. The user specifies a host, directory, 
and file where the file name can include 
wildcards. A user can also specify that a 
recursive remove should be performed. 

A composite task is used as a container for other tasks. 
The use of composite tasks allows users to group tasks 
that collaborate to perform a function into a single task 
and then consider this functionality in an abstract manner. 
In fact, a job submitted to the ExecutionService is simply 
a composite task. While the same states are used for a task 
whether it is atomic or composite, the current state of a 
composite task is determined in a specialized way. The 
state of a composite task is: 

NOT-READY until the starting condition of the 
composite task is satisfied 
READY when the starting condition for the 
composite task has been met but no subtasks of 
the composite task have started to run. 
RUNNING while any subtask of the composite 
task has had a state of RUNNING and any 
subtasks are currently READY or RUNNMG 

- 

A 



SUCCEEDED or FAILED based on a user- 
defined Boolean expression when no more 
subtasks of the composite task can run. The 
Boolean expression contains variables that are 
the states of the subtasks in the composite task. 
This approach provides a user with very precise 
control over the completion state of a task 
without us defining a one-size-fits-all approach. 
CANCELLED if the user cancels the composite 
task. 
NOT-EXECUTED if the starting condition for 
the composite task will not be met. 

5. Implementation 

We have implemented our execution service as an 
Open Grid Services Infrastructure (OGSI) [I91 service 
using version 3 of the Globus Toolkit as our hosting 
environment. We plan to deploy only a few of these 
services on computer systems dedicated to hosting 
services and install clients on the user-accessible IPG 
computer systems. The purpose of this approach is to 
improve reliability and maintainability. Reliability is 
hopefully improved by having only a few services 
deployed on closely monitored systems. Maintainability is 
improved by being able to easily upgrade services 
deployed on a few systems rather than a service deployed 
on every user-accessible system. This approach was very 
helpful with the first version of our Execution Service 
because we upgraded the deployed services many times 
without upgrading the clients. 

An overview of the implementation of our Execution 
Service is shown in Figure 3 .  The core components of our 
service consist of a Task Database and a Task Manager. 
The Task Database is used to store tasks that have been 

submitted for execution and is initially implemented atop 
a Xindice database. Users can obtain information about 
both active (not yet completed) and inactive (completed) 
jobs. Information about inactive jobs is stored for several 
days by default and a user can also specify the amount of 
time to store job information. 

The Task Manager is the core of the service and 
handles the execution of tasks. The two main goals of the 
Task Manager are to execute tasks in the proper order, 
based on the user-specified starting conditions, and not 
overload local and remote resources while executing 
tasks. A more detailed view of the Task Manager is 
shown on the right side of Figure 3. 

Whenever tasks are added to the pool of Active Tasks 
or whenever tasks finish executing, the Task Manager 
examines the Active Tasks and determines if any are now 
ready to run. These ready tasks are moved to Ready 
Queues in the Thread Pools to execute. By following this 
procedure, the Task Manager will execute tasks in the 
correct order. 

A Thread Pool contains a set of Task Threads to 
execute tasks and a Ready Queue containing tasks that are 
ready to execute. A Task Thread removes a task from the 
head of the Ready Queue, executes that task, and then 
t ies  to get another task to execute from the Ready Queue. 

The Task Manager moves a task to a Thread Pool 
based on task type. A Thread Pool has either a fixed or an 
unlimited number of threads available to execute tasks. 
Thread Pools with fixed numbers of threads are used to 
execute tasks that may overload a system such as 
submitting applications and performing file management 
operations. The limited number of threads bounds the 
amount of concurrency and reduces the chance of 
overwhelming the server running the Execution Service 
or the resources being accessed by that service. Thread 

c 



* * -  
c 

. 

Pools with unlimited numbers of threads are used to 
execute tasks that will not overwhelm a resource, such as 
waiting for an application execution to complete. 

As described next, individual tasks also use supporting 
software such as the Globus Java COG GRAM and 
GridFTP clients to perform their functions. 

5.1. Executing Applications Using Globus 

We use the Globus Java COG library to implement our 
task that executes applications. We use the COG GT2 
clients rather than GT3 clients because we currently have 
GT2 services installed on the IPG. We expect it to be a 
simple matter to substitute calls to the Globus 3 client 
library calls for version 2 calls when we upgrade to GT3 
services. 

We use the Java COG GRAM client to execute 
applications, but in a particular way. We do not use the 
GRAM to directly execute the application specified by the 
user in the ExecuteTask. Instead we execute a script that 
we create. We have found that the combination of the 
GRAM and different local schedulers results in several 
problems. First, environment variables are not always 
passed to the application as expected. If a user specifies 
an environment variable in the Globus Resource 
Specification Language (RSL), this environment variable 
may not be set, may be set, or may be appended to the end 
of the existing environment variable. In many cases, users 
pass execution parameters to their applications using 
environment variables so it is important that these 

variables be set correctly. Second, exit codes from 
applications are lost. The Globus GRAM does not attempt 
to return exit codes, and even if it did, local scheduling 
systems often do not provide exit codes that the GRAM 
could return to the user. In many cases, applications 
indicate if they have executed correctly using exit codes 
so it is also important that these exit codes are available to 
users. 

Our approach to both of these problems is to create and 
execute a script. This script sets the environment variables 
exactly as specified by the user, executes the user- 
specified application, captures the exit code of the 
application, and sends this exit code to the Execution 
Service using our Event Management Framework. Each 
ExecuteTask is translated into a composite 
GramExecuteTask, shown in Figure 4, to accomplish this. 
The  execution script is created by the 
GramCreateScriptTask and is copied to the execution host 
using a PutFileTask (not available to users) that uses a 
GridFTP put. The GramSubmitTask then submits our 
script using the GRAM. The GramWaitTask waits for a 
GRAM job to finish and the GramCancelTask is called to 
cancel the GRAM job if the user cancels the 
ExecutionTask. We use these three GramTasks because 
both the GramSubmitTask and GramCancelTask require 
authentication, which is a CPU-intensive task that can 
overwhelm both the server running the Executionservice 
and the computer system running the GRAM server, 
while waiting for a GRAM job to complete requires 
virtually no resources. We therefore wanted to limit the 



e 

4 

number of simultaneous GRAh4 submits and cancels but 
did not want to limit the number of GRAM jobs that the 
Execution Service is waiting to complete. Finally, a 
RemoveTask and a LocalRemoveTask (not available to 
users) are used to remove the execution script that we 
created from the remote and service hosts. 

5.2. File Management Using Globus 
We also use the Globus Java COG library to execute 

our atomic tasks that manage files. Once again, we use the 
GT2 Java COG clients because we currently have GT2 
sei~ices iii&&d ofi he I?G. W e  use iiie GridFTF client 
provided by the Java COG to copy, move, and remove 
files as well as to make directories. We copy files 
between hosts using the 3d party copy functionality of the 
Java COG. We enhance the functionality provided by the 
Java COG by maintaining the permissions of the 
transferred files (such as the executable bit), by 
supporting wildcards in file and directory names, and by 
providing recursive copies. We enhance the ability of the 
Java COG to remove files on remote hosts by allowing 
users to specify wildcards in file and directory names and 
specifying that the remove should be performed 
recursively. We provide moves of files by performing a 
copy of the files and, if the copy succeeded, removing the 
files from the source host. Finally, we directly use the 
Java COG to make directories on remote hosts. 

6. Related Work 

There are a fair number of services that support the 
execution of jobs on grids. The basic grid service for 
executing applications on remote computers is Globus 
GRAM [8] in both it’s GT2 and GT3 incarnations. While 
GRAM performs it’s basic function adequately, it does 
have some deficiencies. It does not always set the 
environment of the application as specified by the user, 
due to difficulties interfacing to the many different types 
of local scheduling systems. It also does not capture the 
exit code of applications executed through it. Finally, 
GRAM lacks the ability to execute complex jobs, such as 
the ones we support. 

The Condor-G system [12] uses the GRAM service, 
but improves on it by enhancing it’s reliability. 
Unfortunately, this improvement currently comes with an 
administrative cost of maintaining a Condor-G daemon on 
each host that wishes to submit Condor-G jobs. The 
Condor group is beginning to address this problem by 
providing a web service wrapper around Condor-G 
daemons so that remote clients can access those daemons, 
but a Condor-G version with this functionality has not yet 
been released. Our service is already implemented in a 
client-server manner and does not have daemons running 
on client hosts. Condor-G has the same goal of reliable 
execution as our service but it does not support jobs as 
complex as ours. Also, unlike our service, Condor-G does 

not maintain a database of jobs that have completed that 
users can access. 

DAGMan [6]  is built atop Condor-G and supports the 
execution of Directed Acyclic Graphs. A DAGMan job 
consists of a set of Condor submit scripts to execute 
where each script has execution order dependencies with 
other scripts. A script is executed when all of the scripts it 
depends on complete successfully. Each script may have 
pre- and post-execution programs to execute before and 
after a script is executed. If the pre-execution program 
fails, its script will not be executed. All post-execution 
prnpms in a DAGMan jnh can either he executed or nnt 
when their associated scripts fail depending on a flag set 
when submitting the DAGMan job. Our job model is 
somewhat similar to the DAGMan job model. One of the 
main differences is that we provide a more general 
approach to specifying when to start tasks with our 
starting condition expressions. This allows our service to 
handle failures in a more general way by defining 
complex sets of tasks to execute when tasks fail or are 
cancelled. Our service is also different in that it does not 
support the specification pre- and post-task programs to 
execute because they are unnecessary in our job model, 
we provide built-in tasks for file management, and we 
provide composite tasks that contain sets of tasks. 

Pegasus [9] is a workflow execute tool where the user 
specifies the tasks to perform without specifling where to 
perform them, Pegasus decides where to execute the tasks 
and creates a DAGMan job to execute the tasks. Pegasus 
workflows are not as fault tolerant as ours because they 
do not include tasks to perform when tasks fail or our 
cancelled and Pegasus workflows are not as complex as 
ours because they do not support composite tasks that 
contain sets of tasks. Pegasus selects resources for the 
workflows submitted to it; functionality that we do not 
support in our Execution Service. 

UNICORE [ I O ]  provides it’s own services for 
executing jobs. These jobs are similar to ours in that they 
can consist of many tasks with execution order 
dependencies between them and the tasks can be 
composite tasks that contain other tasks. We provide more 
flexible conditional task execution than UNICORE 
abstract jobs, but UNICORE does allow a user to indicate 
if tasks should execute whether or not the tasks it depends 
on succeed or fail. Similar to our approach, UNICORE 
also maintains job information after it has completed for 
the convenience of users. UNICORE also provides 
features such as executing each job in it’s own file space 
which is a convenient abstraction. Unfortunately, 
UNICORE is a vertical solution and requires adopting all 
or none of it. 

We use GridFTP [3] to manage remote files and we 
add to the functionality provided by the Java COG [14] 
GridFTP client by supporting wildcards and recursive 
operations. Our service also provides a superset of the 
hnctionality available from reliable transfer services [ 151. 

7 



7. Conclusions and Future Work 

This paper presents our IPG Execution Service that is 
implemented as an OGSI service and reliably executes 
complex jobs on a computational grid. This service is part 
of our IPG service architecture whose purpose is to 
provide a grid environment where users can execute 
applications in a location-independent manner. 

The jobs sent to our Execution Service consist of a set 
of tasks for executing applications and managing data. 
Our service executes each task in a job based on a user- 
defined starting ccndition that is based on the states of 
other tasks. An important feature of this formulation is 
that it allows users to describe tasks to execute when tasks 
fail, a common occurrence in a large distributed system 
like a computational grid, or when the user cancels tasks. 
Another important feature of our Execution Service is that 
when it executes an application, the application is 
executed in the environment exactly as specified by the 
user and the exit code of the application is captured, 
features not supported by many grid execution services. 

There are several directions that we may take for 
future work. First, as requested by our users, we will 
provide C++ and Perl clients to our service. This will 
force us to learn a different OGSI framework, the gSOAP 
framework that is part of GT3, and wrap the C H  clients 
we create with this framework to create Perl clients. 
Second, we will need to support using GT3 mechanisms 
for executing applications and managing files once we 
upgrade our IPG infrastructure from GT2 to GT3. Third, 
there are quite a few new tasks that we could support. We 
could add tasks to manage files indexed by replica 
catalogs, to select virtual files based on metadata, to 
execute an application across multiple computer systems, 
to indicate that tasks should execute simultaneously, or to 
perform loops using special types of composite tasks. 
Fourth, we could enable group-based access to execution 
information. Our scientists typically work in groups so 
such access could be useful. Fifth, the job database 
contained in the Execution Service could be enhanced to 
provide arbitrary searches and to allow users to annotate 
jobs with information that they will find useful later. 
Finally, we could allow our users to pause submitted jobs, 
modify them, and then un-pause the jobs. 

References 

[l] "The Globus Project," httn:'!www.elobus.orq 
[2] "The NASA Information Power Grid," 

htto:~vvi.iDg.n~a.pov 
[3] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, 1. 

Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, 
and S. Tuecke, "Data Management and Transfer in High 
Performance Computational Grid Environments," Parallel 
Computing Journal, vol. 28, pp. 749-711, 2002. 

C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The 
SDSC Storage Resource Broker," Proceedings of the 
CASCON'98, Toronto, Canada, 1998. 
A. Bricker, M. Litzkow, and M. Livney, "Condor 
Technical Summary," Computer Sciences Department, 
University of Wisconsin - Madison 1991. 
Condor, "Condor Version 6.4.7 Manual," University of 
Wisconsin-Madison 2003. 
K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, 
"Grid Information Services for Distributed Resource 
Sharing," Proceedings of the The 10th IEEE International 
Symposium on High Performance Distributed Computing, 
2001. 
K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. 
Martin, W. Smith, and S. Tuecke, "A Resource 
Management Architecture for Metasystems," Lecture 
Notes on Computer Science, vol. 1459, 1998. 
E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, 
"Pegasus: Planning for Execution in Grids," University of 
Southern California, Information Sciences Institute 2002- 
20, November 15 2002. 
D. Erwin, "UNICORE Plus Final Report - Uniform 
Interface to Computing Resources," UNICORE Forum 
e.V. 2003. 
I. Foster and C. Kesselman, "Globus: A Metacomputing 
Infrastructure Toolkit," International Journal of 
Supercomputing Applications, vol. 1 I ,  pp. 115-128, 1997. 
J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. 
Tuecke, "Condor-G: A Computation Management Agent 
for Multi-Institutional Grids," Proceedings of the 10th 
International IEEE Symposium on High Performance 
Distributed Computing, San Francisco, CA, 2001. 
W. Johnston, D. Gannon, and B. Nitzberg, "Grids as 
Production Computing Environments: The Engineering 
Aspects of NASA's Information Power Grid," Proceedings 
of the 8th EEE International Symposium on High 
Performance Distributed Computing, 1999. 
G. v. Laszewski, I. Foster, J. Gawor, W. Smith, and S. 
Tuecke, "COG Kits: A Bridge between Commodity 
Distributed Computing and High-Performance Grids," 
Proceedings of the ACM Java Grande Conference, 2000. 
R. K. Madduri, C. S. Hood, and W. E. Allcock, "Reliable 
File Transfer in Grid Environments," Proceedings of the 
27th IEEE Conferenc'e on Local Computer Networks, 
2002. 
W. Smith, "A Framework for Control and Observation in 
Distributed Environments," NASA Advanced 
Supercomputing Division, NASA Ames Research Center, 
Moffett Field, CA NAS-01-006, June 2001. 
W. Smith, "A System for Monitoring and Management of 
Computational Grids," Proceedings of the International 
Conference on Parallel Processing, Vancouver, Canada, 
2002. 
B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. 
Wolski, and M. Swany, "A Grid Monitoring Service 
Architecture," Global Grid Forum Performance Working 
Group 2001. 
S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, 
C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, and 
P. Vanderbilt, "Open Grid Services Infrastructure Version 
1.0," The Global Grid Forum June 27 2003. 


